DOCUMENT RESUME

ED 396 204 CG 027 112

AUTHOR Van der Linden, Wim J.

TITLE Some Decision Theory for Course Placement. Research
Report No. 95-01.

INSTITUTION Twente Univ., Enschede (Netherlands). Dept. of
Education.

PUB DATE 95

NOTE 37p.

PUB TYPE Reports — Research/Technical (143)

EDRS PRICE MF01/PC02 Plus Postage.

DESCRIPTORS Course Content; Course Objectives; Elementary

Secondary Education; Foreign Countries; *Placement;
Student Evaluation; *Student Placement; Testing
Problems; *Test Interpretation; *Test Reliability;
Test Results; Test Validity

IDENTIFIERS *Bayes Decision Rule; *Bayes Theorem

ABSTRACT

This paper addresses the problem of how to place
students in a sequence of hierarchically related courses from an
(empirical) Bayesian point of view. Based on a minimal set of
assumptions, it is shown that optimal mastery rules for the courses
are always monotone and a nonincreasing function of the scores on the
placement test. On the other hand, placement rules are not generally
monotone but have a form depending on the specific shape of the
probability distributions and utility functions in force. The results
are further explored for a class of linear utility functions.
Numerous illustrations and tables present data and statistical
analysis. (Contains 20 references.) (Author/TS)

|

o sfe e e Yo Je e oo ste o o v o ¥ o oo vl de o oo e ot e o o e e ol ol e vk de o D afe vl Yl e v e vl ol e v s e e sl Sl e et e e e vl el gl de e e e

¥

Reproductlons supplied by EDRS are the best that can be made

from the orlglnal document. *
e o3 v v de Yot Yoot de e vle e S ok ol g de dle o el e el v e vl de et e 9t ¥ e e ol e ofe Yo e e v de e Sl o e d s e e s Y vl e de Sk e S e el e gl ok




Some Decision Theory
for Course Placement Research
Report -

95-01 .

ED 396 204

Wim J. van der Linden

. . US DEPARTMENT OF EDUCATION
PERMISSION 10 REPRODUCT AN

DISSEMINATE THIS MATERIAL
HAS BEEN GRANTE D BY

T Nel| ssen

1O THE EDUCATIONAL RESOURCE &

IhEORIAATION CENTER (ERIG)

S

depar;hnent of

EDUCATION

[ ] ] [ ]
Dwision of Educational Measurement
and Data Analysis

Ot e of { e ationai Hosrath ang Improvement
EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

(J Trus document has been reproduced as
received from the person or organization
onginating

O Minor changes have been made 10
improve reproduction quahity

Pomnls of vitw or opinions slaled in this
gocument do nol necessanly represent
official OERI position or policy

Unwersity of Twente

BEST COPY AVAILABLE

L

[

—-C

~og027112

ERI

PAFullToxt Provided by ERIC




Some Decision Theory for Course Placement

Wim J. van der Linden




Some decision theory for course placement, Wim J. van der Linden - Enschede:
University of Twente, Faculty of Educational Science and Technology, December
1995. - 30 pages.




Course Placement
i

Abstract

The problem of how to place students in a sequence of hierarchically related
courses is addressed from an (empirical) Bayesian point of view. Based on a
minimal set of assumptions, it is shown that optimal mastery rules for the courses
are always monotone and a nonincreasing function of the scores on the placement
test. On the other hand, placement rules are not generally monotone but have a
form depending on the specific shape of the probability distributions anc utility
functions in force. The results are further explored for a class of linea: utility

functions.
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Some Decision Theory for Course Placeament

A course placement problem is met when students with difierent aptitudes enter an
educational program offering classes in the same domain at several entrance
levels. The typical solution of the problem is to administer an aptitude test to the
students to decide at which level they should start. It is the purpose of this paper
to demonstrate how (Bayesian) decision theory could be used to optimize such
placement decisions.

For simplicity, the case of two courses is considered where the first
course has a lower entrance level than the second course. It is assumed that an
aptitude test is administered to decide whether the students have to take the first
course or can go straight to the second course. In addiion, it is assumed that the
first course ends with a mastery test to decide whether those students taking the
first course have learned its content and can be admitted to the second course. A
flowchart of the problem displaymg the temporal relationship between the tests and
courses if given in Figure 1.

[Figure 1 about here]

To denve optimal decision rules for the placement and mastery decisions,

(Bayesian) decision theory 1s a natural framework. Examples of a decision-
theoretic treatment of the mastery problem are found in Hambleton and Novirk
(1973), Huynh (1976, 1977, 1982). Huynh and Perney (1979), van der Linden
(1980, 1990). and van der Linden and Mellenbergh (1877). The placement
problem has been addressed 1n Sawyer (submitted) and van der Linden (1981).
The novefty in this paper 15 that optiral rules for the two decisions problems are
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derived simultaneously. The advantages of a simultaneous approach have been
spelled out in Vos (1994,1995). For the present problem, they will be discussed
later in this paper.

Notation

Sampling of students from a population P is assumed. The observed
scores on the aptitude or placement test, administered before the first course, will
be denoted by a random variable X. Likewise, the observed score on the mastery
test is denoted by Y whereas the true score on this test is denoted by T. For ease
of exposition, the vanables are assumed to be continuous.

For each possible value of the observed score, the decision to assign the

students either to Course 1 or to Course 2 has to be made. A placement rule can
therefore be denoted either by the set of x values A1={x:Course 1} or its
complement A2={x:Course 2}. Likewise, a mastery rule can be represented by the
set 81(X)={YIX.F3I|} or its complement 82(x)={y:x,Pass}. Note that the mastery rule
is aliowed to depend on the score on the placement test, X=x. This type of
mastery rule presents the most general appreach. For example, it is possible that
for candigates i Course 1 with 3 high score on the placement test a different
mastery rule 1s optimal than for candidates with low scores. The idea to allow
mastery rules o depend on the scores on a previous placement test is congenial
with the 1dea developed in Bayesian statistics that the use of collateral information
generally improves the quality of decision making. On the other hand, as will be
shown below. constraining optima! rules B, (x) or 82(x) to be the same sets of y
values for each possible value x requires additional conditions on the test score
distnbutions
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Distributional Assumptions

It is assumed that it all students in P are assigned to Course 1, the trivariate
distribution of their scores (X,Y,T) can be represented by a density function
f,(xy.t). i, on the other hand, all students are assigned directly to Course 2, the
distribution is assumed to be represented by a density function f2(x,y,t). For future
reference, it is understood that the conditional distributions of T given (X=x,Y=y), T
given X=x, Y given X=x, and (Y,T) given X=x are denoted by pi(tlx,y), qi(tlx),
hi(ylx). and ry.t|x), i=1.2, respectively. The marginal distribution of X is denoted
by g;(x). Without loss of generality, # is assumed that all density functions are
nonnegative everywhere. As usual, cumulative distribution functions will be
denoted by capitals.
The following assumptions about fl(x,y,t) seem plausible:

g,(x)=g(x). i=1.2; (1)
P (tix.y) 1s decreasing in x and y for ali values of t, 1=12; (2)
H (yIx) 1s decreasing in x for all values of y, 1=1.2; (3)
Q {tix) 1s decreasing in x for ali values of 1, 1=1.2. - (4)

The first assumption 1s realized t the placement test 1s administered before either
course s taught--a condition automatically metl n regular course placement
problems The last three assumptions require the conditional distnbutions of the
observed and true mastery test scores to be stochastic increasing in their

\
()
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conditioning variables. These conditions can be expected to be met if the
placement and mastery tests are well designed, that is, if they are constructed
such that high scores on the placement test tend to coincide with high observed
and true scores on the mastery test. In van der Linden and Vos {in press), it is
proved that conditions as in (4) follow from the assumptions in (2)-(3).

Several other assumptions could be specified to define a course
placement problem with well-designed tests and courses. For example, for the
conditional cumulative distributions functions of (Y,T) given X=x, Ri(y,tlx), it seems

reasonable to expect that:
Rily.tlx) increases in i for all values of x, y, and t. (5)

This condition states that the probability of high observed and true scores on the
mastery test given a score on the placement test is larger for students assigned to
Course 1 than for those assigned directly to Course 2. In other words, no matter
the apttude scores of the students, following Course 1 will tend to have a positive
effect on their observed and true mastery of s subject matter. However, this and
other obvious properties are no! needed to derve the results presented in this
paper. For a more general treatment of the properties of stochastic order in
multivanate distributions of test scores. see van der Linden (submitted).

Utility Structure

The usual approach 1s to define the utilities involved i mastery decisions as a
function of the true score underlying the mastery test. Since mastery decisions are
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made only for students assigned to Course 1, it seems logical to also view the
utilities invoived in the outcomes of this decision as a function of the true mastery
score. As for Course 2, the position is taken that the decision to assign students
directly to this course can be viewed as an advanced mastery decision based on
the aptitude test as a predictor of the students’ mastery scores after Course 1. It
follows that the true mastery score can be used as the common criterion to

measure the utilities involved in ali decisions in the simultaneous placemant-

mastery probiem addressed here. More in particular, the following utility tunctions
are defined:

Assignment to Course 1 (x eA1) and Fail (y eB1(x)): u1(1);

Assignment to Course 1 (x € A,} and Pass (yeBZ(x)):

Assignment to Course 2 (x €A)):
As for the shape of the utility functions. it 1s assumed that:

u,(th1s monotonically decreasing in t;

Lo(t) and u (1) are monotonically ncreasing in t. (8)
Condition (7) can be defended pointing at the fact that the decision to have a
student fai after Course 1 has less utility, the higher the true mastery level of the

student The reverse s true for the other two possible decisions; both tor the
actual mastery and the ‘advanced mastery® decision. it should hold that the
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outcome has larger utility, the higher the true mastery level of the student.
However, the actual mastery decision involves the additional costs of teaching
Course 1 which are missed for the *advanced mastery* decision. For traditional
group-based instruction, these costs can be assumed to be a constant
independent of t Hence,

U*(t)2u,(t) for all values of 1, (9)

As yet, no parametric form will be assumed for the utilty functions. The
intention 15 first to further explore the features of the problem as well as the shape
of its optimal decision rules. Then a parametric form for the utility functions will be
introduced. In doing so, two addtional assumptions about the nature of the
diference between u,(t) and u™(t) will be made.

Formalization of the Problem

The condtion on the utility functions in (9) suggests that if utilities were the only
concern. the best decision would be {0 always assign the students to Course 2.
This action represents the largest utilty since the constant costs involved i
teaching the first course are missea However, i the decisions had to be based
only on the test score distnbut-ons. the best decision would always be to assign
students 1o Course 1. As the condition in (5) shows, no matter the score of the
students on the placement test, the probabiity of having high observed or true
mastery of the subject matter taught in this course increases when attending .
Therefore, 1 mastery of Course 1 15 a prerequisite for success in Course 2,

BEST COPY AVAILABLE
11




Course Placement
8

students who attend Course 1 will tend to be more sucsessful in Course 2.

Obviously, a criterion is needed to solve this dilemma between utility and
probability. In this paper, the Bayes criterion of maximum expected utility is used.
For the utility functions and distributions defined above, the expected utility

associated with the simultaneous problem considered in this paper can be written

as:
E[U(A1.B4(x))} = [{ f [u1 (xyDdidy + [ [uz(t )4 (x.y.1) ot dy) dx
Ay Byx) R BQ(X)
3 [ [ (Dio(x.y.1) dtdy dx. (10)
o Ar R R
It is assumed that the integrals in {10} converge. Formally, the problem is now to
- 4 find sets A1 and B1(x) for which the expression in (10) is maximal.

Moving to posterior densities and taking expectations, (10) can be written
as:

E[U(A1Bo00)] = [ (Eqluy(Mix] - Eglu™(T)x
A1
+ | EqluglTy = ug(T)[xyhyy x)dy}g(x) dx
Bé(x)
+ Eglu (). (1)

where the subscripts at the expectation signs index the distributions with respect to

1 which the expectation 1s taken. The problem is now to find sets A1 and Bz(x) for

-
(38

which {11} 1s maximal. Note that the last term of (11) 1s a constant independent of
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A1 and Bz(x) and may be ignored. Since the sample spaces of X and Y are not
constrained in any way, the optimal sets can be found by first maximizing the
second term over all possible sets of y values and next maximizing the sum of the
_-',_‘._ first two terms over alf possible sets of x values.

General Solution to the Problem

The general results in this paper are presented in the form of two propositions.

The first proposition states that under the conditions given above the optimal

mastery rule is always a cutting score on the mastery test score Y which is a

decreasing function of the placement test score X=x. The sacond proposition

states that the form of the optimal placement rule does not necessarily have the
form of a cutting score on the placement test.

Proposition 1. Under conditions (1)-(3) on the postenor distributions of T given
(X=x.Y=y} and Y gwven X=x, it holds for the utility functions in (7)-(8) that the

_ optima! sets Bz(x) are itervals {yclx).w). where yc(x) is @ decreasing function of
' X.

Proo!. From (7)-(8) it follows tha ust)-u, 1) 15 Increasing in t whereas the condition
In (2) states that the distripution of T given (X=x.Y=y) 1s stochastic increasing in
_ the two conditioning vanables From a wall-known theorem for such distributions
(Lehmanrn, 1986, p.116), i follows that E1{u2(T)-u1(T) | x.y] increases in x and y.
Let t(x.y) denot: this expectation, and consider the refation {(x,y)l T (x,y)=0}. This

refation defines a function y=y.(x) which 1s decreasing in y (van der Linden & Vos,

i
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- in press, Lemma 4). Hence, for each x there exists a value yc(x) such that T (xy)
iS nonnegative for yzyc(x) but negative for y<yc(x). Since the integral of T (x,y)
over hy(ylx) is maximal if it is taken over all values of x for which the integrand is
nonnegative, it follows that the optimal sets Bz(x) are the intervals (yc(x),oo]. n

Proposition 2. Under the conditions stated above it does not hold generally that the

]

optimal set A, is monotone, that is, there always exists a cutting score X such

1
DR L

that A1=(-oo,xc] iS optimal.

Proof. From (4) and (7) it foliows that E1[u1(T)Ix] decreases in x whereas (4) and
(8) imply that E2[u *(T)Ix] increases in x. Therefore, the integrand in the first term
in (11) decreases in x. Following an argument in van der Linden and Vos (in
press), it is now proved that the integrand in the second term in (11) is
nondecreasing in x. Substituting 82(x): [yc(x),oo) into (11), since T{xy) is

nonnegatwe for yzyc(x) and y,(x) 1s decreasing n x, it holds for any Xp>X, that

_ ' r(x2,y)h1(y:x2)dy - ' T(X1,y)h1(in1)dy >
e ycixo) yclxy)

- [ cxpynytyigiey - [ <teynylyiedy >
e yc(x” yc(x1)

[ T(xq.y)ih(gy o) - hyly.xq)jdy =
YC(X1)

o

[ﬁ Qlyllhyly Ixph-hyty ixq)ldy. (12)

.
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where o@fy) = '[yc(x 1)",C,)(y)t(xhy), and l[yc(x”,m)(y) is an indicator function
which takes the value 1 it y e [y.(x{).=) and the value O otherwise. By
definition, ¢(y) is a nondecreasing function of y, and from (3) it follows that the
second term in (11) is nondecreasing indeed. Now it depends on the rate of
change of the first and second terms in (11), and hence on the specific form of the
utility functions and score distributions whether the integrand in the integral over x

in (11) is a monotonically decreasing function of x. Therefore, the optimal set Ay
does not generally take a monotone form. W

Proposition 2 implies that for some utility functions and distributions, an
optimal set Ay may consists of two or more non-adjacent intervals of placement
test scores. Generally, it does not hold that if a student with a certain aptitude is
assigned to Course 1, the same should apply for all students with lower aptitudes.
The resull goes against the prevailing practice of using placement rules in the form
of a single cutting score on a test. The explanation of this ‘anomaly® is the
dilemma between utility and probability referred to in the previous section. Utilities
and probabilities are different quantities. If for a given aptitude level it is known that
the expected increase in mastery due to attending Course 1 offsets the increase in
utilty invoived in directly attending Course 2, no inferences as to other aptitude
levels are possible without knowing the specitic forms of the utility functions and
probabilty distributions.

Calculation of Optimal Rules

From the proot of Proposition 1 1t {ollows that the optimal mastery function
IS the decreasing function y=y () defined by
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E[ug()-uy(T)xy] = 0. (13)

Substituting yc(x) into (11), maximal expected utility is obtained if A1 is taken to be
the set of.x values for which the integrand of the outer integral is nonnegative.
That is, the optimal set A1 is given by:

Ay = i EqlugMix) - Eolu ™(T)x]
+ [ EqlupM-ug(T)xyingly x)dy 2 0}.

yelx) (14)
The opttmal set in (14) can be found using a suitable method of numerical
integration. As in practice observed test scores are always discrete, a simple
approach 15 to substitute all possible test scores into the expression in (14} to find
the subset for which it 1S nonnegative. However, to be able to do so, the
regression tunctions in (14) must be estimated. The following section shows how

to deal with the problem # linear utities and regression functions can be assumed
to hold

Linear Utility Structure
For the utility functions in {6). the following knear structure 1s adopted:
uft) = byltg-tvay. by

upt) = boft-tehe ag, b2>0.
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*

u*t) = b¥(t-tp)+a”, b0, (1n

where 1, is assumed to be a threshold value on the true mastery scale which
separates true masters from true nonmasters. If such a threshold does not exist,
the above functions should be reparameterized absorbing 1C into the intercept
parameter. Note that the slope parameters are required to be larger than zero to
meet the conditions in (7)-(8). Also, generally, a,, 3y, a' < 0 because these utility
constants represent the constant parts of the costs involved in teaching Course 1
—"_--_-' and/or Course 2. It is reminded that this paper views the decision to assign
students to Course 2 as an advanced mastery decision. Hence, utility functions
. (16) and (17) have the same parameter structure but may have different values for
- _' their parameters to deal with the specifics of the application. An example of the
use of these utility functions will be given later in this paper. Techniques to elicit
utility functions for placement decisions have been addressed in Sawyer (1994,
April).

Substituting utilty functions (15)-(17) into the expression for the expected
utiity in {11) and using the result in Proposition 1:

E[U(A1yc(0)] = .f((m DM + (@g-a") - byEq(T]x) - b *Ex(T|x)
- Ay

: ' | [-(D Do)t + (3 -a1) + (D +DR)E4(TIxy)hy(y[x)dy}g(x)dx.
- yeolx) (18)

From the general sofution in (13) it follows that the optimal mastery function is
defined by.

NEST COPY AVAILABLE




Course Placement

14
-(by+bolt; + (ap-ay) + (by+bo)E¢(TIxy) = 0, (19)
whereas (14) implies that the following set of x values is optimal:
A= [ (b1+b g + (3g-a") - byE4(T|X) - b *Ep(T|x)
oo +
[ [-lo1+bltc + (ap-ay) + (o1 +Do)Eq (TIxy)hyly [dy = 0). (20)

yclx)

Linear Regression

It linear regression of T on X and Y can be assumed, that is, if i holds
that

E¢(Tixy) = arxyts + BrxyiX « Yrxyiy. (21)

the optimal mastery function 1s:

-1 -1
yolx) = [IC - (82—81)/(01 +bo) "O‘TXY1]YT)(Y1 - (BTXY1YT)(Y1)X' (22)

Note that this function 1S linear in x with a slope parameter equal to ’ﬁTXYY'F)‘(V
Since families of condttional distributions with the property in (2) have nonnegative
covariances between the random varnable and the conditioning variables (van der
Linden, submitted), it follows that Bryy and Y Ty are nonnegative, and thus that
the function in (22) 1s nondecreasing indeed.

As classical test theory shows:
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E,(Thx) = E{(YIx).

The former can thus be written as:
Ei(Tlx) = ayyj + ByxX-

Substituting (21) and (23) into (20}, the optimal set A1 is:
Ay = {x Ky - b1Byxy + D Byxolx

v [ Ko+ o1 + bdBryxyx + Tryxavin(y iy 2 0}, (24)
yelX)

Ky = byltg - aryxy) + b7ll - oryxo) + (a3 -3 7). (25)

Ko = (by + bolarxyy -t¢) + (3 ), (26)

and where yc(x) IS given by (22).

Classical test theory shows that the regression parameters in (22) and
(24)-(26) are simple functions of the mean of Y, the vanances of X and Y, the
correlation between X and Y, and the reliabilty of Y. If X and Y are standardized,
the relevant expressions are” ayy, = 0. Byy, = pxyi. oTxyi = 0. Brxyi =

2 )
pxy ! “PYYNU"PXYl). and yryy, = (DYY|—pXYi)/(1-pXYi) (Lord & Novick,
1968, chaps. 2 and 12).

Substituting the above results into (22), the tollowing torm for the optimal

L
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mastery function is obtained:
’ 2
~Pxy1 va1(1-pvv1))x

yolx) = (t; - (ap-a4)/(by +bo)) 5 ) = ( 5
PYY1-Pxyy PYY1-Pxy1 (27)

The same substitution into (24) gives:

A=t Ky - Kgx v [ (Kp + Kgx + Kgyhylyxidy 2 0, (28)
yoix)

(b1 + b')tc + 3y - a’, {29)
-(by + bolle + 3y - ay, (30)
bipxy1 + b7 pxy2. (31)

2
(by + boloxyi(t - pyy M1 - pyyq). (32)

2 2
Ks = (01 + balPyy - Pyyy V(1 - Pyyy)- (33)

To use the above decision rules the conditional density functions h,({y | x)
have 1o be estimated from the data. Fitting a well-chosen parametric form for these
densties 1s an obvious approach to the estimation problem. i h1(y | x) is chosen
to be the norrnal denstty function, an appropriate change of varnable in the integral
and use of the fact that for the c.di.. ®(u), t holds that |d(u)-{1 +exp(1.7u)]'1|




Course Placement
17

< 0.01 unitormly in u (Lorc & Novick, 1968, sect. 17.2) show that (28) is equal to:

(x)}- X

Ag= (6 Ky - Kax + (Kp + Kgx)[1 + exp (1.7y°)&)]'1
1-p

XY1
1, YeX)-pxy1x
+ Kq exp ('5(0—21)2) > 0}, (39)
1=Pyy1
with
-1 2
Ky = (21) 201 -pS ) Ke. (36)

Obviously, the second and the fourth term in left-hand side of the
inequalty in (34) are monotonically decreasing in x. Since the slope of yC(x) in (27)
can never be positive, the second factor of the third term is also monotonically
decreasing in x. However, the first factor of this term is increasing in x. Thus it
depends on the relative acceleration of these two factors whether or not the lefi-
hand side of the inequalty is monotonically decreasing in x and allows for an
optimal placement rule of the form Ay = (-eo, x(].

Numerical Examples
A few numerical examples were calculated to shed some kight on the behavior of

the optimal placement rule and mastery function in (34) and (27) for several values
of their parameters. The following six cases were addressed:

21
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Case 1: Standard parameter values. Correlations between cognitive
predictor variables and coliege grades typically range from 0.50-0.60 (Etaugh,
Etaugh & Hurd, 1972; see also Schoenfeldt & Brush, 1975). A choice of 0.55 for
pxyi seems therefore realistic. The same authors found an average reliability for
the grade-point average over a large variety of programs equal to 0.689. Since the
average number of courses per program was 5.23, the reliability of a single grade
is generally lower. On the other hand, tests for remedial courses typically are more
carefully constructed than tests for regular courses. Based on these
considerations, a choice of pyyq=0.60 was made. The cutting score t, was set
equal to 0.5, which is a value O.S/J(T .60 standard deviations larger than the
average score on the mastery test. The values of the utility parameters aq, 3y, and
a”® in (15)-(17) had to be selected relatively to the scale of t. it was assumed that
the costs involved in acditionally teaching Course 1 were equal for the students
who faiied and those who passed the mastery test, that is, ay=a,. On the other
hand, sending students directly to Course 2 does involve only the costs of teaching
Course 2. Therefore, utilty parameter a* was set larger than the common value
ol a, and 3. As for the values of the clope parameters b1 and b2 in (15)-(16),
failing the mastery test for high values of t was assumed to be less serious than
passing the test for low values. This chorce is justified if the program is structured
such that a retest 1s offered to those students who fail the test but those who pass
are aliowed to continue without a further check of their true mastery levels. Hence,
b1<b2. As the placement decis:on is considered as an advanced mastery decision
in this paper, the value of its slope parameter was set equal to value for the actual
mastery decision, that is, b2:b * _In summary, the following set of standard values
for the parameters in (27) and (34) was assumed:
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PXY1=Pxy2=0.55

Pyy1=0.60;

tc=0.50;

aJ=a2:-1.0;

a =-0.50;

b1=1.0}

b2=b*=1.2.

Case 2: Higher costs of teaching Course 1. It was assumed that the

constant costs involved in the teaching of Course 1 were higher than the standard

value in the previous case. Therefore, the common value of the parameters a4 and

ay was lowered to -1.50. All other parameters were kept at their standard values.
Case 3: Utility less sensitive to true mastery level. To simulate the case of

the utilities associated with the various decision outcomes being less sensitive to
ditferences between the true mastery scores, the values of the three slope
parameters were halved: b=0.5 and by=b *=0.6. All other parameters were kept
at their standard values.

Case 4: Adaptive instruction. If Course 1 1s an individualized course in
which the intensity of instruction 1s adapted to the aptitude level of the students,

the savings n nstructional costs involved in assigning students directly to Courses

2 may decrease as a function of t. To simulate this case, the values of by and b2

were raised to 1.2 and 1.4, respectvely, but all other parameters were kept at their
standard values still.

Case 5: Higher predictive vahdty of placement test. Next, it was

supposed that a better placement test was available than the test studied in Case
1. Therefore, pyyy was raised to 0.70. The height of this value must be judged
relatively to the reliability of the mastery scores which was kept at its standard
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value (as were the values of all other parameters).

Case 6: Higher reliability of mastery test. To assess the effect of a higher

reliabilty of the masiery scores on the optimal placement and mastery rules,
Pyyy was raised to 0.5, leaving all other parameters at their standard values.
Figure 2 gives the plot of the optimal mastery function yc(x) as a function

of

[Figure 2 about here]

x. It appears that the function decreases by an amount of 0.74 for an increase of
the placement score X equal to cne standard deviation. In the second part of
Figure 2, A(x) is the left hand-side of the inequaiity in (34) plotted as a function of
x. To find the roots of

[Table 1 about here]

X (x)=0, Newton's method. as implemented in Mathematica's FindRoot command
(Wolfram, 1993) was used. Table 1 lists the results for the present and the
following cases. Only one root was found, at x=0.592. Thus, a monotone
placement rule exists for this case.

The plots for all other cases are given in Figure 3. For higher costs of
teaching Course 1 (Case 2). the root of A(x) moved down to x=0.094, which, as
expected. implies

[Figure 3 about here]
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that fewer students are assigned to Course 1. For utilities less sensitive to
changes in the true mastery level t (Case 3), A(x) was again found to cross the
horizontal axis only once, this time at x=0.092. Making the instruction in Course 1
adaptive to the mastery levels of the students (Case 4) resutted in the existence of
two cutting score on the placement, one at x=0.654 and another at x=5.455. Given
the distribution of X assumed in this example, the second cufting score can be
ignored for practical reasons. A higher validity of the placement test for the
examinees assigned to Course 1 (Case 5) resulted in an optimal mastery function
funning much steeper because the prediction of the mastery based on the scores
could now be based on more valid placement scores. The placement rule was
nonmonotone again; two cutting scores were found, one at x=0.442 angd the other
at x=2.778 implying that examinees with lower angd very high placement scores
had to be assigned to Course 1 and the others to Course 2. Finally, for a higher
relabilty of the mastery test for the students assigned to Course 1 (Case 6). the
relative importance of the placement test as a predictor of the trye mastery level
wen! down substantially, and the optimal mastery function became a more
horizontal function of the placemen: score. A(x) now crossed the horizontal axis
only at x=0.746.

Concluding Remarks

One of the agvantages o' optimizing placement and mastery decisions
simultaneously 1s that more realistic utilty structures are possible. For example, the
point of view taken n this paper that placement decisions are in fact advanced
mastery decisions could never have been translated into a utility structure if the




Course Placement
22

two decisions were treated separately. Another advantage is that the placement
scores can be used as collateral information to improve the mastery decisions. The
example showed that for a linear utility structure the behavior of the optimal
placement rule and mastery function was realistic for various changes in the
sensitivity of utility to true mastery level, the adaptivity of the instruction as well as
the validity and reliability of the placement and mastery tests, respectively.

The question can be raised under what conditions the optimal cutting
score on the mastery test is a constant indepéndent of the score on the placement
test rather than the decreasing function defined by (13). From (11) it immediately
foliows that if

h1(ylx) = h1(y), for all x, (37)

the inner integral is only a function of y and the mastery rule becomes independent
of X=x. It (37) is satisfied, it holds that Byyy=0, and the optimal mastery function
under hinear regression in (27) reduces to its first term which 1s a constant indeed.
However. (37) represents the case in which the aptitude test has no predictive
validity whatsoever as to the scores on the mastery test. i 1s doubted whether
such tests could ever play a significant role in placement decisions. In a sense, it
has thus been demonstrated in this paper that placement decisions can only be
based on valid aptitude tests i they involve optimal mastery rules which are a
decreasing function of the apttude scores.
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Table 1

Roots of A (x) for Cases 1 through 6

- Case Roots of A (x)
a 1 0.592
2 0.094
3 0.092
4 0.654 5.455
5 0.442 2.778

0.746
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Figure Captions

Flowchart of a two-course placement problem with
a mastery test.

Optimal placement rule and mastery function for
standard set of parameter values (Case 1).

Optimal placement rules and mastery functions for

Cases 2 through 6.
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